Kansas State University

search

K-State Turf and Landscape Blog

Author: jahoyle

Time to fertilize cool-season turfgrass

(By Jared Hoyle, KSU Turfgrass Research and Extension)

September is almost here and that means it is prime time for to fertilize your tall fescue or Kentucky bluegrass lawns. If you could only fertilize your cool-season grasses once per year, this would be the best time to do it.

These grasses are entering their fall growth cycle as days shorten and temperatures moderate (especially at night). Cool-season grasses naturally thicken up in the fall by tillering (forming new shoots at the base of existing plants) and, for bluegrass, spreading by underground stems called rhizomes. Consequently, September is the most important time to fertilize these grasses.

Apply 1 to 1.5 pounds of actual nitrogen per 1,000 square feet. The settings recommended on lawn fertilizer bags usually result in about 1 pound of nitrogen per 1,000 square feet. We recommend a quick-release source of nitrogen at this time. Most fertilizers sold in garden centers and department stores contain either quick-release nitrogen or a mixture of quick- and slow-release. (We will talk about slow release in a later article.)

The second most important fertilization of cool-season grasses also occurs during the fall. A November fertilizer application will help the grass green up earlier next spring and provide the nutrients needed until summer. It also should be quick-release applied at the rate of 1-pound actual nitrogen per 1,000 square feet.

So total you only want to use up to 3 lbs of actually nitrogen per 1,000 square feet over September, October and November.

Here are some different ways you can apply the quick release nitrogen source;

Method 1 (Totaling 3 lbs of actually nitrogen per 1,000 square feet)

  • September – 1 lbs of actual N/1,000 square feet
  • October – 1 lbs of actual N/1,000 square feet
  • November – 1 lbs of actual N/1,000 square feet

Method 2 (Totaling 3 lbs of actually nitrogen per 1,000 square feet)

  • September – 1.5 lbs of actual N/1,000 square feet
  • November – 1.5 lbs of actual N/1,000 square feet

Method 3 (Totaling 2 lbs of actually nitrogen per 1,000 square feet)

  • September – 1 lbs of actual N/1,000 square feet
  • November – 1 lbs of actual N/1,000 square feet

Click here for the Kansas Lawn Fertilizing Guide – https://www.bookstore.ksre.ksu.edu/Item.aspx?catId=545&pubId=10639

Always make sure your pride your fertilizer evenly!!!!  You don’t want this to happen.

Always remember to READ THE LABEL for the correct rate, turfgrass tolerance, and specific instructions before application!!!

***Mention of trade names or commercial products in this article is solely for identification purposes and does not imply recommendation or endorsement, nor is criticism implied of similar products not mentioned by Kansas State University.***

Don’t forget to follow me on twitter @KSUTurf.

Also, visit our facebook page www.facebook.com/KSUTurf

Monthly calendar for cool-season lawns for the rest of 2017.

(By Jared Hoyle, KSU Turfgrass Research and Extension)

I can’t believe it… Where has the summer gone?  I blinked and students are running around campus and just last night it was cool enough to cut the A/C off and open the windows.  Not to mention just in a couple weeks we will be watching college football.

When all of this happens I know I need to be getting out and working on my cool-season lawn.  Time for fertilizer, overseeding existing lawns and establishing new lawns.  So first I want to go back and look at the lawn calendar for cool-season lawns.  Here are some recommendations.

Late-July through August
If you see grub damage, apply a grub killer that contains Dylox. Imidacloprid is effective against young grubs and may not be effective on late instar grubs. The grub killer containing Dylox must be watered in within 24 hours or effectiveness drops.

September
Fertilize around Labor Day. This is the most important fertilization of the year. Water in the fertilizer.

November
Fertilize. This fertilizer is taken up by the roots but is not used until the following spring. Water in fertilizer. Spray for broadleaf weeds even if they are small. Broadleaf weeds are much easier to control in the fall than in the spring. Spray on a day that is at least 50 degrees. Rain or irrigate within 24 hours reduces effectiveness. Use label rates for all products!

Always remember to READ THE LABEL for the correct rate, turfgrass tolerance, and specific instructions before application!!!

***Mention of trade names or commercial products in this article is solely for identification purposes and does not imply recommendation or endorsement, nor is criticism implied of similar products not mentioned by Kansas State University.***

Don’t forget to follow me on twitter @KSUTurf.

Also, visit our facebook page www.facebook.com/KSUTurf

K-State Radio Network – Overseeding Cool-Season Lawns

(By Jared Hoyle, KSU Turfgrass Research and Extension)

For this week’s horticulture segment, K-State turfgrass specialist Jared Hoyle talks about taking the preliminary steps now for overseeding a cool-season lawn this fall.

Click the link below for K-State Research and Extension Agriculture Today Radio Program hosted by Eric Atkinson.

Influence of Tall Fescue Baseball Infield Mowing Height on Ground Ball Speed

Influence of Tall Fescue Baseball Infield Mowing Height on Ground Ball Speed

( By Jared Hoyle, KSU Turfgrass Research and Extension and Gage Knudson, KSU Turfgrass Undergraduate Research Assistant)

Summary. Athletic field conditions have shown to influence playability. Results of ball-roll speed studies can be used to predict success of infield hits. Field trials were conducted at Rocky Ford Turfgrass Research Center to determine the influence of tall fescue baseball infield mowing height on ground ball speed and batter on-base success. Mowing heights of 2.5, 5, and 7.6 cm resulted in 1.77, 2.08 and 1.88 s ground ball times, respectively.

Rationale. Tall fescue [Schedonorus arundinaceus (Schreb.)] is a drought tolerant turfgrass species commonly used as a baseball infield playing surface. Cultural management practice studies on athletic surfaces have shown direct influences on playability. Minimal information exists on the influence of infield mowing height and ball-roll speed. Results of ball-roll speed studies can be used to predict success of infield hits.

Objectives. Determine the influence of tall fescue baseball infield mowing height on ground ball speed and batter on-base success.

Study Description. Research trials were initiated on November 21, 2016 at the Rocky Ford Research Center (RF) in Manhattan, KS to determine the influence of tall fescue baseball infield mowing height on ground ball speed and batter on-base success. Research trials were conducted on 30.5 m long simulated tall fescue infield. Two experimental runs were conducted on three different infield mowing height treatments; 2.5, 5, and 7.6 cm. Six individual replications of a simulated ground ball were applied to each infield condition and experimental run. Ground balls were applied with a pitching machine set to 112.6 kph. Simulated ground balls were timed in seconds (s) from simulated pitched ball and bat contact (insertion into machine) to baseball fielder location (30.5 m distance). Successful infield hits were calculated using constant athletic ability data and infield ball-roll data. Data was subjected to ANOVA in SAS and means were separated according to Fisher’s protected LSD at 0.05 significance level.

Results. Mowing heights of 2.5, 5, and 7.6 cm resulted in 1.77, 2.08 and 1.88 s ground ball times, respectively (Figure 1). Utilizing ground ball speed results, researchers were able to predict that a simulated batter, if a ground ball was hit to the shortstop position (30.5 m distance), would result in an unsuccessful at bat if a tall fescue infield was mown at 2.5 cm and successful if mown at 5 and 7.6 cm, utilizing consistent player athletic ability data (Figure 1 and Table 1).

The Effect of Human Insect Repellents on Perennial Ryegrass (Lolium perenne) Growth and Recovery

The Effect of Human Insect Repellents on Perennial Ryegrass (Lolium perenne) Growth and Recovery

(By Jared Hoyle, KSU Turfgrass Research and Extension and Peyton South, KSU Turfgrass Undergraduate Research Assistant)

Summary. Turfgrass damage has been observed from misapplications of human insect repellents. Minimal research has been conducted to determine the cause of the damage. Greenhouse research trials were conducted to survey various human insect repellents on turfgrass growth and recovery. Insect repellents resulted in a wide range of damage. No common trend was observed although research trial shows possible repellents to be utilized around turfgrass that will minimize turfgrass injury.

Rationale. Human insect repellents containing diethyltoluamide (DEET) commonly damage turfgrass due to non-target application. Common visual damage results in two areas of healthy growing turfgrass in the shape of footprints with necrotic and chlorotic turfgrass surrounding. Damage results in unacceptable turfgrass quality and playability. Minimal research has been conducted to explore the influence of human insect repellents on turfgrass injury and recovery.

Damage from bug spray misapplication to turfgrass.

Objectives. Evaluate the influence of human insect repellants on Perennial Ryegrass (Lolium perenne) growth and recovery.

Study Description. Research trials were initiated in November of 2016 at the Throckmorton Plant Sciences Center Greenhouses in Manhattan, KS to determine the influence of human insect repellents on perennial ryegrass (Lolium perenne) growth and recovery. Perennial ryegrass was established in 10 by 10 cm pots at 387 kg ha-1, maintained at 4.4 cm and were irrigated to prevent drought stress. Greenhouse environment was a 12 hr photoperiod at 15.5°C/ 22.2°C (night/day). Insect repellent treatments were applied to perennial ryegrass plants arranged in a randomized complete block design with 4 replications. Treatments included 9 insect repellents and a non-treated control for comparison (Table 1). Five treatments contained the active ingredient DEET. Other commonly used insect repellents were also included for comparison. Collected data included visual percent injury on a 0%- 100% scale, where 10% represented maximum acceptable injury. Data was subjected to ANOVA in SAS and means were separated according to Fisher’s protected LSD at 0.05 significance level.

Results. All treatments except the control resulted in at least 6% turfgrass injury 1 day after application (DAA). Repel Max (40% DEET) and Off Active (15% DEET) resulted in 68% and 30% injury, respectively 21 DAA. At 21 DAA all other treatments resulted in turfgrass injury similar to the non-treated. Insect repellants with the same active ingredient percentage resulted in various perennial ryegrass injury and recovery. Although no different in % DEET, Off Active and Off Family resulted in 30% and 0% injury, 21 DAA, respectively. Results also demonstrate that permanent non-target turfgrass injury could occur if Off Active and Repel Max are applied as a human insect repellent. Further greenhouse and field trials are needed to confirm results as well as determine if other non-labeled ingredients influence turfgrass injury.

Always remember to READ THE LABEL for the correct rate, turfgrass tolerance, and specific instructions before application!!!

***Mention of trade names or commercial products in this article is solely for identification purposes and does not imply recommendation or endorsement, nor is criticism implied of similar products not mentioned by Kansas State University.***

Don’t forget to follow me on twitter @KSUTurf.

Also, visit our facebook page www.facebook.com/KSUTurf

Effect of Dormant ‘MidIron’ Bermudagrass Colorant Applications on Clothing Blemishing

Effect of Dormant ‘MidIron’ Bermudagrass Colorant Applications on Clothing Blemishing

(By Jared Hoyle, KSU Turfgrass Research and Extension and Daniele McFadden, KSU Turfgrass Undergraduate Research Assistant)

Summary. Minimal research exists on potential clothing blemishing when athletes contact turfgrass applied with colorants. Field trials were conducted to test the effect of turfgrass colorant applications on clothing blemishing if a athlete is to come in contact with the playing surface. Turfgrass colorants will adhere to turfgrass leaf blades and do not blemish clothing. Although, tested turfgrass pigments did result in significant blemishing of clothing.

Rationale. Bermudagrass (Cynodon dactylon) is a warm-season turfgrass used on athletic fields in the Midwest. Although a desirable turfgrass species for athletic fields it fails to maintain acceptable green color during winter. Turfgrass colorants have been utilized to maintain acceptable green turf color through dormancy periods. Athletes of all ages play on sports fields where colorants have been applied. Extensive research has explored turfgrass colorants on turfgrass quality but minimal research exists on potential clothing blemishing when athletes contact turfgrass applied with colorants.

Objectives. The objective of this research was to determine if turfgrass pigments and paints blemish athletic clothing after the recommended dry time.

Study Description. Field research trials were initiated Feb. 16, 2017 at Rocky Ford Turfgrass Research Center in Manhattan, KS on dormant ‘MidIron’ bermudagrass maintained at 3.8 cm. Treatments were applied to 1.5 by 1.5 m plots arranged in a randomized complete block design with four replications. Treatments consisted of three paints (Wintergreen Plus, Green Lawnger, Endurant Premium), one pigment (Envy) and a non-treated control for comparison. All colorant treatments were applied at 1:6 (v:v) dilution in 1,234 L ha-1 spray volume. After recommended drying time (4 hrs), a white cotton t-shirt was pulled 1.5 m across the plot weighted down with 11.4 kg. Digital image analysis was used to determine percent blemishing of t-shirt area. Data was subjected to ANOVA in SAS and means were separated according to Fisher’s Protected LSD at 0.05 significance level.

Results. Envy (turfgrass pigment) resulted in the highest blemished clothing percentage (60%). All other treatments were no different than the non-treated (Figure 2). Results demonstrate that the tested turfgrass paints safely adhere to the turfgrass canopy and do not blemish athletic clothing.

Figure 1. Dormant colorant field trial plots located at Rocky Ford Turfgrass Research Center in Manhattan, KS.

Always remember to READ THE LABEL for the correct rate, turfgrass tolerance, and specific instructions before application!!!

***Mention of trade names or commercial products in this article is solely for identification purposes and does not imply recommendation or endorsement, nor is criticism implied of similar products not mentioned by Kansas State University.***

Don’t forget to follow me on twitter @KSUTurf.

Also, visit our facebook page www.facebook.com/KSUTurf

New Turfgrass Publications

(By Jared Hoyle, KSU Turfgrass Research and Extension)

The KSU Turfgrass Team has been busy updating turfgrass extension publications.  Some of the most recent publications include benefits of a healthy turf, lawn fertilization guide and turfgrass mowing.

Enjoy the updated publications!

Benefits of Heathy Turfgrass

Environmental, economic, health, and safety benefits of turfgrass found in lawns, athletic fields, parks, and roadsides.

https://www.bookstore.ksre.ksu.edu/Item.aspx?catId=545&pubId=12800

Lawn Fertilizing Guide

This guide helps homeowners determine how much fertilizer to apply to keep lawn vigorous and healthy.

https://www.bookstore.ksre.ksu.edu/Item.aspx?catId=545&pubId=10639

Turfgrass Mowing: Professional Series

Mowing basics for professional turfgrass managers. Information on mowing height and frequency, clippings, mowing pattern, mower operation, blade sharpening, mower selection, maintenance, and safety

https://www.bookstore.ksre.ksu.edu/Item.aspx?catId=545&pubId=712

Mowing Your Lawn

Mowing basics for homeowners. Includes information on mowing height and frequency, pattern, mower operation, maintenance, and safety.

https://www.bookstore.ksre.ksu.edu/Item.aspx?catId=545&pubId=615

Recycling Grass Clippings

Information for homeowners on why and how to recycle grass clippings.

https://www.bookstore.ksre.ksu.edu/Item.aspx?catId=545&pubId=701

 

For more turfgrass publications visit the KSRE Bookstore.

https://www.bookstore.ksre.ksu.edu/Category.aspx?id=528&catId=545&Page=1

Hope to see you August 3rd at the KSU Turfgrass Field Day

(By Jared Hoyle, KSU Turfgrass Research and Extension)

The next Turfgrass Field Day will be held on Thursday, August 3, 2017 at the John C. Pair Horticultural Research Center, Wichita.

The KTF Turf Field Days are a great way to see and learn about the turfgrass research at K-State first hand. The events are held annually in the summer at the turfgrass research locations of Kansas State University.

The Field Day qualifies for recertification credit hr for commercial pesticide applicators.

Field Day Brochure – http://www.kansasturfgrassfoundation.com/uploads/8/9/7/3/8973595/2017turffielddayprogramcolor-web.pdf 

You can now Register and Pay Online at  https://2017turffieldday.eventbrite.com
or you can register by downloading, printing, and mailing go to the 2017 Field Day brochure.

Exhibitors can get more information from the Exhibitor Registration Form.

Schedule of the 2017 Field Day 
8:00 a.m. Registration (coffee, tea, donuts)
Visit Exhibitors
8:45         Welcome
9:00        Tour Highlights:
*Turfgrass Weed Control Update
*Turf & Ornamental Diseases
*Bermudagrass & Zoysiagrass Cultivar Selection
*Using Kansas Mesonet to Imrpove Accuracy in Landscape Irrigation
*Right Plant, FROM the Right Place
* Prairie Star Flowers
*Tall Fescue NTEP
*Turf & Ornamental Insect Control
11:30       Lunch

After Lunch

  • Equipment Demonstrations

If you have any questions, please contact,
    Christy Dipman 
1712 Claflin, 2021 Throckmorton Hall
Manhattan, Kansas 66506
Phone: (785) 532-6173
Fax: (785) 532-6949
Email: Christy

Landscape and Garden Bugs

(Posted by Jared Hoyle, KSU Turfgrass Research and Extension)

K-State Horticultural Entomologist Raymond Cloyd covers a variety of insects now at work in home lawns, landscapes in gardens, including bagworms infesting evergreens, emerald ash borers attacking ash trees, and squash bugs feeding on garden cucurbit crops.

Click the link below for K-State Research and Extension Agriculture Today Radio Program hosted by Eric Atkinson.

 

Brown Patch Resources

(By Jared Hoyle, KSU Turfgrass Research and Extension)

Tall fescue [Festuca arundinacea Schreb.] is one of the most predominantly used cool-season turfgrass species in the transition zone. Its deep root system and coarse textured leafs lend to its ability to withstand drought, heat, and wear stress. Although it is well adapted to survive the summer months in Kansas, it can be susceptible to injury from disease. Brown patch [Rhizoctonia solani] is a disease that can damage leaf tissue, shoots, and the crown of tall fescue during the summer months. This disease is most prevalent during periods of high humidity, high temperature (above 80°F), and high nitrogen levels. During the mornings mycelia can be seen forming a “smoke ring” around the affected area. Applications of preventative fungicides have proven to be a successful management strategy in reducing the occurrence of brown patch incidences in tall fescue stands.

Here are some resources from the past about brown patch!

Last year Dr. Fry was seeing brown patch in May.  With moisture and warm nights brown patch can start to develop.  https://blogs.k-state.edu/turf/im-not-ready-to-be-thinking-about-brown-patch-jack/

There are many products out there for brown patch control in turfgrass.  Which one is right for you.  Here is a quick update on research that was conducted at Olathe on some brown patch products. https://blogs.k-state.edu/turf/best-way-to-get-your-turf-noticed-brown-patch/ 

Do you know what brown patch looks like?  Do you know how to tell the difference between turfgrass stress and the disease.  Dr. Kennelly can show you the difference. https://blogs.k-state.edu/turf/is-this-brown-patch/

K-State Publications

Commercial Management of Brown Patch – https://www.bookstore.ksre.ksu.edu/pubs/EP146.pdf

Homeowner Management of Brown Patch – http://www.plantpath.k-state.edu/extension/documents/turf/Brown%20patch%20%20homeowners%202016.pdf