Kansas State University

search

Extension Entomology

Category: Greenhouse

Biological Control for Greenhouse Growers

–by Dr. Raymond Cloyd

 

Enrollment is Now Open!

This 4-hour class consists of pre-recorded lectures and video demonstrations and is intended for greenhouse and ornamental plant growers and others interested in learning about the fundamental concepts of insect biological control methods. It provides introductory content to those growers new to biological control and introduces more advanced methods, including banker plants.

 

The course is instructed Michigan State University’s online course learning management system, Desire 2 Learn by Heidi Lindberg, Greenhouse and Nursery Extension Educator with MSU Extension. Dr. Raymond Cloyd (Kansas State University Extension) co-authored the content. Participants enrolled in this self-paced course will take a pre-test and a final exam to gauge their learning of the topics. Self-assessment quizzes will engage students with the material throughout the course. The course also provides links to additional resources on pertinent biological control topics.

 

Course Content

The 4-hours of pre-recorded lecture and video demonstrations are divided into six units:

 

Unit 1: Introduction to Greenhouse Biological Control

Unit 2: Commercially Available Biological Control Agents

Unit 3: Using Banker Plants in Biological Control Programs

Unit 4: Implementing a Biological Control Program

Unit 5: Interactions of Pesticides and Biological Control Programs

Unit 6: Greenhouse Examples of Biological Control Systems: Application Strategy and Costs

 

The first unit is an overview of the challenges and opportunities of biological control, how biological control systems work, factors to consider when developing your program, and the importance and methodology of scouting in the greenhouse. The second unit of the course covers the commercially available biological control agents sold in the United States and provides benchmark release rates and facts useful to those releasing biological control agents in the greenhouse. Unit three discusses the four most common banker plant systems for green peach and melon aphids, greenhouse whitefly, and western flower thrips. The fourth unit covers important issues, such as, quality control of biological control agents. Unit five addresses integrating pesticides (including fungicides) with biological control agents. Unit 6 presents examples of biological control programs implemented by growers for wholesale spring bedding plants and greenhouse vegetable operations.

 

Below is the website to access information associated with the course:

https://www.canr.msu.edu/online-college-of-knowledge/biological-control

 

Cost: The cost is $129 per person.

 

Course offerings: This course is offered twice a year (summer and winter).

 

Summer Course:

Registration period: May

Course available to students: June-August

Winter Course:

Registration period: November

Course available to students: December-February

 

Win a $75 gift card: Individuals who paid for the course and completed the pre-test, final exam, and post-course evaluation will be entered into a raffle for one of three $75 gift cards!

 

Financial Need Scholarships:

There are three scholarships available for those that are interested in the course but do not currently have the financial means to take it. Greenhouse growers interested in the scholarship will be able to apply for it upon registering by writing a short paragraph about why you feel you should be awarded this scholarship and how you plan to use the information you learn in your business or professional endeavors. The applicants and winners will be kept confidential. The cost of the course will be $39.99 for scholarship winners. Scholarship winners will be notified after the enrollment period has passed.

 

Registration Instructions

To register for this course you will need to create an account, sign in with your email/password, and complete the registration process. Step-by-step instructions are below.

 

Create your MSU Guest Account/Community ID and Password: Create Your Account

Login to the registration system with your Community ID and Password: Biological Control for Greenhouse Growers

Follow the instructions to register for the course. Upon registration, you will receive a receipt and instructions for accessing the course.

Logging Into the Online Course

Once you have registered, follow the instructions below to login – you will use the same login credentials that you set during registration (your NetID is your email address used during registration and use the same password set during registration).

 

Go to the Michigan State University’s Online Course System (known as Desire2Learn or D2L): https://d2l.msu.edu/.

Click on the Login button. In the MSU NETID field enter your email address (enter the same email used during registration).

Enter the password you set during registration.

You will be logged into D2L – click on the View All Courses link and you will see the course listed.

*Note: If you need to reset your password go to: https://community.idm.msu.edu/ and select the option for Forgot Password.

 

TECHNICAL ASSISTANCE

If you need technical assistance, please contact Michigan State University Discovery Services. They are available at reachout@msu.edu or 517-353-8700. Tell them you are logging into an MSU Extension online course with an MSU Community ID.

 

FREQUENTLY ASKED QUESTIONS (FAQ)

What is my username/NETID?

Your username (or NET ID) is the email address you used to create your account during registration (you use the same email address/password for registering and for taking the course).

What URL do I go to for logging into the course?

Go to: https://d2l.msu.edu/. You will see the Michigan State University at the top of the page.

I received a “not authenticated” response when trying to login – what do I do?

A “not authenticated” message is typically an issue with a password not being entered correctly. To reset your password at any time go to: https://community.idm.msu.edu/ and select the option for Forgot Password. You will receive an email from a sender called “Community ID” with a link to reset your password.

I forgot my password – where can I reset it?

To reset your password at any time go to: https://community.idm.msu.edu/ and select the option for Forgot Password. You will receive an email from a sender called “Community ID” with a link to reset your password.

Who can I call for technical support?

If you need technical assistance, please contact Michigan State University Discovery Services. They are available at reachout@msu.edu or 517-353-8700. Tell them you are logging into an MSU Extension online course with an MSU Community ID.

 

New Extension Publications Associated with Horticultural Entomology Developed in 2019

–by Dr. Raymond Cloyd

 

Aphid Management in Greenhouse Production Systems (MF3442)

https://www.bookstore.ksre.ksu.edu/pubs/MF3442.pdf

 

Oak Leaf Itch Mite (MF2806)

https://www.bookstore.ksre.ksu.edu/pubs/MF2806.pdf

 

Bagworm: Insect Pest of Trees and Shrubs (MF3474)

https://www.bookstore.ksre.ksu.edu/Item.aspx?catId=524&pubId=22339

 

Grub Management in Turfgrass Using Insecticides (MF3439)

https://www.bookstore.ksre.ksu.edu/Item.aspx?catId=524&pubId=21619

 

Scale Insect Pests (MF3457)

https://www.bookstore.ksre.ksu.edu/pubs/MF3457.pdf

 

 

Twospotted Spider Mites

–by Dr. Raymond Cloyd

The recent hot weather we are experiencing throughout Kansas is conducive to the development of the twospotted spider mite, Tetranychus urticae (Figure 1), resulting in extensive feeding damage to the leaves of horticultural plants in gardens and landscapes (Figures 2 and 3). Twospotted spider mite is a warm-weather mite with populations commonly active from late spring through early fall. Summer temperatures allow twospotted spider mite females to reproduce rapidly, which helps to overwhelm natural enemy (e.g. predators) populations by producing multiple generations throughout the season.

Fig 1. Close-up of twospotted spider mite adults.

Fig 2. Twospotted spider mite feeding damage on euonymus bush leaves (Auth–Raymond Cloyd, KSU)

Fig 3. Twospotted spider mite feeding damage on tomato leaves (Auth–Raymond Cloyd, KSU)

The management of twospotted spider mite populations involves maintaining plant health by avoiding ‘stress,’ implementing sanitation practices, and/or using pesticides with miticidal activity (miticides/acaricides). First, prevent plants from experiencing moisture ‘stress’ by maintaining proper watering and mulching practices, which will be helpful in minimizing potential problems with twospotted spider mite populations. For instance, inadequate moisture or over fertilizing plants, especially with water-soluble nitrogen-based fertilizers, can enhance development and reproduction of twospotted spider mites.

It is important to monitor for twospotted spider mite populations regularly by shaking plant parts (e.g. leaves, branches, or twigs) onto a clipboard with a white sheet of paper, and then look for the mites crawling around (you can actually see the mites). You can crush the mites on the white sheet of paper to determine if they are a pest or not. For example, plant-feeding spider mites typically leave a green streak when crushed whereas predatory mites leave a red streak.

A quick and effective method of managing twospotted spider mite populations is applying a forceful water spray throughout the plant canopy at least twice per week during the season. Forceful water sprays will dislodge eggs and the motile life stages (larvae, nymphs, and adults). Be sure to direct forceful water sprays toward the leaf undersides where all life stages (eggs, nymphs, larvae, and adults) of the twospotted spider mite are located. The removal of plant debris and weeds eliminates alternative hosts and overwintering sites.

There are a number of pesticides with miticidal activity available to professionals for suppression of twospotted spider mite populations outdoors, including: abamectin (Avid), acequinocyl (Shuttle), bifenazate (Floramite), etoxazole (TetraSan), hexythiazox (Hexygon), potassium salts of fatty acids (M-Pede), and horticultural oils (petroleum, mineral, or neem-based). Homeowners do not have as many options. In fact, the only “true miticide” still available is hexakis or fenbutatin-oxide, however, this active ingredient cannot be purchased alone as the active ingredient is typically formulated with another pesticide (insecticide) such as acephate (Orthene). However, homeowners can apply commercially available insecticidal soaps (potassium salts of fatty acids) or horticultural oils. Always read the label and apply miticides before twospotted spider mite populations are extensive and causing damage. Moreover, be sure to rotate miticides with different modes of action to avoid twospotted spider mite populations developing resistance. If possible, target ‘hot spots’ or localized infestations of twospotted spider mites, which will reduce the potential for resistance developing. Be sure to thoroughly cover all plant parts with spray applications; especially when using pesticides with contact activity. Some miticides such as abamectin (Avid) and etoxazole (TetraSan) have translaminar activity, which means the material penetrates into leaf tissues and forms a reservoir of active ingredient within the leaf. This provides residual activity even after spray residues have dried. Mites that feed on leaves will ingest a lethal concentration of the active ingredient and be killed.

It is important to note that many pesticides used to suppress other insect pests encountered on plants in landscapes and gardens may be harmful to the natural enemies of twospotted spider mite; consequently, resulting in an inadvertent increase in twospotted spider mite populations or secondary pest outbreaks.

 

 

 

“Bugs” To Be On The Look-Out For

–by Dr. Raymond Cloyd

 

Green June Beetles: lots still flying around. This has been one of the best…or worst years…depending on your perspective.

Japanese Beetle Adults: many are feeding on fruit trees and roses.

Bagworms: time is running-out in regards to applying insecticides…you have about two to three more weeks…and then it is too late.

Mosquitoes: with all the rain and moist conditions, mosquitoes (adults) are very prevalent.

Milkweed Aphids: many milkweed plants are literally covered with the milkweed aphid. Simply use a forceful water spray to dislodge them from plants.

Squash Bugs: eggs have hatched and nymphs are looking for suitable feeding sites…on the leaf underside.

 

New Extension Publication

–by Dr. Raymond Cloyd

We have a new extension publication available entitled, Scale Insect Pests

 

This new extension publication provides information on the biology, scale types, plant damage, and offers strategies for managing specific types of scales. There are color images of the scale insect pests found in Kansas and surrounding states. The extension publication is available from the following website:

https://www.bookstore.ksre.ksu.edu/pubs/MF3457.pdf

 

Japanese Beetles

— by Dr. Raymond Cloyd

Japanese beetle, Popilla japonica, adults are present in most regions of Kansas feeding on different plant species, including: roses, Rosa spp.; littleleaf linden, Tilia cordata; and Virginia creeper, Parthenocissus quinquefolia, among many other plant species. The ways to manage populations of the adult stage of Japanese beetle are limited, and have been for many years, with the use of insecticides still being the primary strategy. Japanese beetle adults are one of the most destructive insect pests of horticultural plants in landscapes and gardens. Furthermore, the larva or grub is a turfgrass insect pest in home lawns, commercial settings, and golf courses.

 

Japanese beetle adults are 9/16 of an inch long, metallic green with coppery-brown wing covers, and about 14 tufts of white hair are present along the edge of the abdomen (Figure 1).

Fig 1. Japanese Beetle Adults Feeding On Leaf (Auth–Raymond Cloyd, KSU)

Adult Japanese beetles emerge from the soil and live up to 45 days feeding on plants over a four-to-six-week period. Adults feed on many horticultural plants including: trees, shrubs, vines, herbaceous annual and perennials, vegetables, fruits, and of course—roses. Plant placement in the landscape and the volatiles emitted by plants are factors that affect adult acceptance. In addition, Japanese beetle adults produce aggregation pheromones that attract males and females to the same feeding location. Adults can fly up to five miles to locate a host plant; however, they tend to only fly short distances to feed and for females to lay eggs.

Japanese beetle adults feed through the upper leaf surface (epidermis) and leaf center (mesophyll), leaving the lower epidermis intact. Adults avoid feeding on tissue between leaf veins, resulting in leaves appearing lace-like or skeletonized (Figure 2).

Fig 2 Japanese Beetle Adult Feeding Damage On Leaf (Auth–Raymond Cloyd, KSU)

They are most active during warm days, feeding on plants exposed to full sun throughout the day, which is likely why roses are a susceptible host plant because roses require at least six hours of direct sunlight to flower. Japanese beetle adults start feeding at the top of plants, migrating downward after depleting food sources. Japanese beetle adults will also feed on flowers (Figure 3),

Fig 3. Japanese Beetle Adults Feeding On Rose Flower (Auth–Raymond Cloyd, KSU)

chewing holes in flower buds, which prevents flowers from opening or causes petals to fall prematurely.

Managing Japanese beetle adult populations involves implementing a variety of plant protection strategies, including: cultural, physical, and applying insecticides. Cultural control is affiliated with maintaining healthy plants through proper irrigation, fertility, mulching, and pruning, which are important in minimizing ‘stress’, and may possibly decrease susceptibility. Moreover, removing weeds that are attractive to Japanese beetle adults such as smartweed (Polygonum spp.) may help to reduce infestations. Physical control involves hand-picking or collecting Japanese beetle adults from plants before populations are extensive. The best time to hand-pick or collect adults is in the morning when ambient air temperatures are typically ‘cooler.’ Adults can be easily collected by placing a wide-mouthed jar or bucket containing rubbing alcohol (70% isopropyl alcohol) or soapy water underneath each adult, and then touching them. Adults that are disturbed fold their legs perpendicular to the body, and fall into the liquid and are subsequently killed. This procedure, when conducted daily or every-other-day, for at least three weeks, particularly after adults emerge, may substantially reduce plant damage. A study reported that collecting Japanese beetle adults daily at 7:00 pm had the greatest impact on populations and reduced subsequent damage.

 

In general, the use of Japanese beetle traps (Figure 4) in a landscape or garden is not recommended since the floral lure and synthetically-derived sex pheromone may attract more adults into an area than would ‘normally’ occur. Japanese beetle adults may also feed on plants before reaching the traps, which increases potential damage.

 

Spray applications of contact insecticides will kill Japanese beetle adults. However, repeat applications are required; especially when populations are excessive. Several pyrethroid-based insecticides; such as those containing permethrin (Sevin®), bifenthrin or cyfluthrin as the active ingredient, will suppress Japanese beetle adult populations. However, most of these insecticides will also directly harm many natural enemies (parasitoids and predators) and continual use will result in secondary pest outbreaks of other pests including the twospotted spider mite, Tetranychus urticae. In addition, these insecticides are directly harmful to honey bees and bumble bees. Therefore, applications should be conducted in the early morning or late evening when bees are less active. In general, systemic insecticides are not effective against Japanese beetle adults because they have to feed on leaves and consume lethal concentrations of the active ingredient. If extensive populations are present, plant damage can still occur.

 

PHOTO NOT AVAILABLE

The battle against Japanese beetle adults requires diligence, patience, and persistence, to prevent adults from causing substantial damage to plants in landscapes and gardens.

 

 

Mosquitoes: How to Avoid Being “Bitten” by This “Sucking” Insect

–by Dr. Raymond Cloyd

The current wet weather and standing water has provided “perfect” conditions for mosquitoes (Figures 1 and 2). The three primary strategies that must be implemented to avoid mosquito problems and bites are: 1) source reduction, 2) personnel protection, and 3) insecticides.

Fig 1. Mosquito Sucking Blood (Author–Inverse

Fig 2. Mosquito Magnet Sign (Auth–Raymond Cloyd, KSU)

1) Source Reduction
It is important to routinely eliminate or reduce all mosquito breeding sites, which will effectively decrease mosquito populations, by removing stagnant or standing water from items or areas that may collect water. These include the following:
* Wheelbarrows
* Pet food or water dishes
* Saucers/dishes underneath flower pots
* Empty buckets
* Tires
* Toys
* Wading pools
* Birdbaths
* Ditches
* Equipment
* In addition, check gutters regularly to ensure they are draining properly and are not
collecting water

2) Personnel Protection
Protect yourself from mosquito bites by delaying or avoiding being outdoors during dawn or dusk when most mosquitoes are active. Use repellents that contain the following active ingredients: DEET (Figures 3 and 4) or picaridin (Figure 5). Generally, DEET provides up to 10 hours of protection whereas picaridin provides up to 8 hours of protection. A product with a higher percentage of active ingredient will result in longer residual activity or repellency. For children, do not use any more than 30% active ingredient. Furthermore, do not use any repellents on infants less than two months old. Clothing can be sprayed with DEET or permethrin (pyrethroid insecticide). However, be sure to wash clothing separately afterward. Before applying any repellent, always read the label carefully.

Fig 3. DEET Repellents (Auth–Raymond Cloyd, KSU)

Fig 4. DEET Repellent (Auth–Raymond Cloyd, KSU)

Fig 5. Repellent With Picaridin (Auth–Raymond Cloyd, KSU)

3) Insecticides

For stationary ponds, there are several products that may be used, such as; Mosquito Dunks and/or Mosquito Bits (Figure 6). Both contain the active ingredient, Bacillus thuringiensis subsp. israelensis, which is a bacterium ingested by mosquito larvae that results in death. The bacterium only kills mosquito larvae with no direct effects to fish or other vertebrates. Avoid making area-wide applications of contact insecticides because these are generally not effective, and may potentially kill many more beneficial insects and pollinators (e.g. bees) than mosquitoes.

Fig 6. Mosquito Dunks and Mosquito Bits (Auth–Raymond Cloyd, KSU)

What Does Not Work Against Mosquitoes 

The following items will not control mosquitoes:

* Mosquito repellent plants (citronella plants)

* Bug zappers

* Electronic emitters

* Light traps/carbon dioxide traps.

If anyone has questions or comments regarding mosquito control please contact your county extension office or Department of Entomology at Kansas State University (Manhattan, KS).

Termites

— by Dr. Jeff Whitworth and Dr. Holly Davis

The last few days of warm, sunny conditions after the preceding few days of cooler, wet weather have apparently initiated considerable termite swarming activity.

Again, make sure to positively identify the insects swarming, as ants are also actively swarming.  There is a huge difference in damage potential between termites and ants, even carpenter ants.  So, please refer to these KSU extension publications to properly identify and manage ants and termites:

 

Termites, MF722: https://www.bookstore.ksre.ksu.edu/pubs/MF722.pdf

Ants, MF2887: https://www.bookstore.ksre.ksu.edu/pubs/MF2887.pdf

Common Asparagus Beetle

–by Dr. Raymond Cloyd

If you are growing asparagus then it is that time of year to be aware of the only insect pest of asparagus; the common asparagus beetle, Crioceris asparagi. Adult beetles are 1/4 inch long. The body is metallic blue to black with red margins and six cream-colored markings (Figure 1).

Figure1. Common Asparagus Beetle Adult (Author–Raymond Cloyd, KSU)

Adults emerge from the soil in early spring and fly to new asparagus shoots where they mate and feed. Females lay up to 30 eggs on the end of spear tips as they emerge from the soil (Figure 2)

Figure2. Common Asparagus Beetle Eggs on Spear Tip of Asparagus (Author–Raymond Cloyd, KSU)

Larvae hatch from eggs after about a week, migrate onto the ferns, and commence feeding. The larvae look like a small slug. They are wrinkled, 1/3 inch in length, and olive-green to gray with black heads and legs (Figure 3).

 

Figure3. Common Asparagus Beetle Larvae Feeding on Asparagus (Author–Raymond Cloyd, KSU)

Larvae feed for approximately two-weeks and then drop to the ground, burrow into the soil, and form a yellow pupa. After several weeks, adults emerge and start feeding. Common asparagus beetles overwinter underneath plant debris, loose bark, or hollow stems of old asparagus plants. The life cycle can be completed in eight-weeks. There are two generations in Kansas.

The adults and larvae feed on asparagus spears and can defoliate ferns if populations are extensive. Larvae consume leaves and tender buds near the tips, which leaves scars that eventually turn brown. Damage caused by larvae interferes with the plant’s ability to photosynthesize (manufacture food); thus depleting food reserves for next year’s crop.

The plant protection strategies that can be implemented to reduce problems with common asparagus beetle populations include: applying insecticides; hand-picking eggs, adults, and larvae and placing into a container with soapy water; and/or removing any plant debris after the growing season to eliminate overwintering sites for adults. Insecticides should be applied as soon as common asparagus beetles are present, and again in late summer through early fall to kill adults before they overwinter. Thorough coverage of all plant parts is important in suppressing populations.

 

 

 

Dormant Oils

–by Dr. Raymond Cloyd

Dormant oils are applied during winter in order to deal with insect and mite pests that survive the winter in overwintering life-stages, such as eggs or mature females. Instead of waiting until spring to initiate “control” measures, the application of dormant oils may be helpful in reducing costs associated with pesticide inputs (in this case, insecticides and miticides) later in the season (spring through fall). The advantages of applying dormant oils include: 1) a wide range of activity against most species of mites and scales—even the eggs; 2) minimal potential for resistance developing in insect and/or mite pest populations; 3) less direct and indirect harmful effects to beneficial insects and predatory mites compared to pesticides with long-residual activity; and 4) relatively low toxicity to humans and other mammals. The disadvantages of dormant oils include; potential phytotoxicity during the growing season and minimal residual activity or persistence.

Dormant oils are typically derived from paraffinic crude oil, and are the heaviest of the petroleum-based oil sprays with a low unsulfonated residue (Figure 1).

figure-1-dormant-oil-product

Figure 1: Dormant Oil Product

The unsulfonated residue is an assessment of the phytotoxic compounds remaining after distillation and refining. An unsulfonated residue >92% indicates a highly refined product with less potential for phytotoxicity. Dormant oils generally have a unsulfonated residue value <92%.

Dormant oil applications are primarily directed at killing overwintering pests including certain mites and scales (Figure 2),

figure-2-dormant-oil-product-label-information

Figure 2: Dormant Oil Product Label Information.

before they become active in the spring and are capable of causing plant injury. Applications are made during winter so as to minimize phytotoxicity to ornamental plants. A 2% to 4% application rate is generally recommended in late fall to early spring. Dormant oils have contact activity and either suffocate; by blocking the breathing pores (spiracles), or directly penetrate and disrupt cell membranes of exposed insect and mite pests. However, dormant oils have minimal residual activity once residues dissipate, so thorough coverage of all plant parts is essential.

Since dormant oils are applied to all plant parts, the overwintering stage of the insect or mite pest must be located on the plant. However, not all insect and mite pests overwinter on plants. For example, dormant oil applications are not effective against the twospotted spider mite (Tetranychus urticae) because the mite overwinters as a female in plant debris, mulch, or other non-plant protected places. In contrast, the spruce spider mite (Oligonychus ununguis) overwinters as an egg on plants, primarily evergreens such as arborvitae, hemlock, juniper, and pine; so the spruce spider mite is susceptible to dormant oil sprays.

Dormant oils are effective in killing the overwintering stages of scales, especially first and second instars or nymphs (=crawlers). For example, euonymus scale (Unaspis euonymi) overwinters as second instar nymphs or mature females; both life stages are susceptible to dormant oil applications. However, certain scales that overwinter as eggs such as oystershell scale (Lepidosaphes ulmi) and pine needle scale (Chionaspis pinifoliae) are more tolerant of dormant oil applications because the eggs are generally stacked or piled on top of each other. Subsequently, dormant oils may not penetrate and contact the bottom layer. As a result, additional insecticide applications are typically required after egg hatch.

An issue when using dormant oils is the potential for plant injury or phytotoxicity. Some plants, such as arborvitae, beech, redbud, and certain maples (Japanese, red, sugar, and amur), may be harmed by dormant oil sprays. Furthermore, the needles of Colorado blue spruce (Picea pungens) may be discolored or change from blue to green as a result of a dormant oil application. Phytotoxicity may be a problem when >4% application rates are used and/or when applications are performed in early fall before dormancy or in late spring at bud-break. Problems associated with phytotoxicity are less likely to occur when applications are made in early November through February, which is when most plants are completely dormant. In order to avoid phytotoxicity, always ensure the spray solution is continually agitated. Also, never apply dormant oils when temperatures are ≤32ºF. Dormant oils should be applied to deciduous plants when the ambient air temperature will stay above freezing for at least 24 hours. Evergreens, in general, are more susceptible to damage than deciduous plants, so it is best to apply dormant oils when temperatures remain above 40ºF over a 24-hour period although there is no quantitative evidence suggesting that applications made at <40°F will damage dormant fruit trees. In addition, general recommendations are that dormant oils should never be applied to plants that are stressed since stressed plants are more susceptible to phytotoxicity. For example, lack of moisture, extreme temperatures, and sudden drastic changes in the ambient air temperatures after spraying, prolonged windy conditions, and disease or insect infestations may predispose plants to phytotoxicity. However, there is no direct evidence indicating that dormant oils are harmful to stressed trees.

There is a general misconception that insect and mite pest populations are unable to develop resistance to dormant oils. However, this is not true. For instance, a Christmas tree plantation of Scots pine (Pinus sylvestris) trees was sprayed with dormant oils for more than 10 years in succession to “control” pine needle scale. Eventually, the scale population became more and more difficult to “control.” Why? Well, what was discovered was that the scale covers actually increased in thickness; making it difficult for the dormant oil to penetrate the outer covering and kill the eggs.

Preventative dormant oil applications may avoid dealing with abundant insect and/or mite pest populations during the season. Therefore, inputs from insecticide and/or miticide applications may be reduced, thus preserving the natural enemies of mites and scales, including; predators and parasitoids that may naturally regulate populations of these pests.

 

Subscribe By Email

Get every new post delivered right to your inbox.

This form is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.