Kansas State University

search

Extension Entomology

Tag: feeding

Geraniums and Petunias Beware of the Tobacco Budworm

By Dr. Raymond Cloyd

Have you noticed that your geraniums and petunias are not blooming (flowering)? Well, the “critter” or culprit causing the problem may be the caterpillar or larval stage of the tobacco budworm (Heliothis virescens). Adults are pale-green to light-brown with the forewing marked with four light wavy bands (Figure 1).

Figure 1: Tobacco budworm adult
Figure 1: Tobacco budworm adult

The wingspan is approximately 38.0 mm. Adult females can lay between 500 and 1,000 eggs within 2 to 3 days. Caterpillars are 38.0 mm in length when full-grown and vary in color depending on the host plants fed upon. The caterpillars (larvae) may be black, pale brown, yellow, green, and/or red. They may also possess stripes that extend the length of the body (Figure 2).

Figure 2: Mature larva (caterpillar) of tobacco budworm
Figure 2: Mature larva (caterpillar) of tobacco budworm

Furthermore, caterpillars may have small hairs or setae on localized sections of the body. The caterpillars tunnel into buds (Figure 3)

Figure 3: Tobacco budworm larva (caterpillar) tunneling into petunia flower bud
Figure 3: Tobacco budworm larva (caterpillar) tunneling into petunia flower bud

and feed from inside or chew flower petals, which appear ragged (Figure 4).

Figure 4: Tobacco budworm larva (caterpillar) feeding on petals of petunia flower
Figure 4: Tobacco budworm larva (caterpillar) feeding on petals of petunia flower

Damage usually increases during the growing season. Furthermore, caterpillars feeding inside flower buds on developing ovaries will destroy flowers. Be on the look-out for black fecal deposits (“caterpillar poop”) (Figure 5)

Figure 5: Black fecal deposits ("caterpillar poop") associated with tobacco budworm larva (caterpillar) feeding
Figure 5: Black fecal deposits (“caterpillar poop”) associated with tobacco budworm larva (caterpillar) feeding

on the flower petals or on leaves below the flowers, which is a clear indication that the caterpillars are feeding. Tobacco budworm caterpillars will feed on a number of annual bedding plants besides geraniums and petunias, including: ageratum, chrysanthemum, nicotiana, snapdragon, and strawflower. Ivy geraniums may be less susceptible than other geranium types. The way to deal with tobacco budworm populations is to apply insecticides before the caterpillars tunnel into the buds using materials containing the following active ingredients: spinosad, cyfluthrin, permethrin, or bifenthrin. Be sure to thoroughly cover all plant parts as tobacco budworm caterpillars will also feed on plant leaves.

 

You can find more information on tobacco budworm feeding on petunia in the following article:

Davidson, N. A., M. G. Kinsey, L. E. Ehler, and G. W. Frankie. 1992. Tobacco budworm, pest of petunias, can be managed with Bt. California Agriculture 46 (July-August): 79.

Squash Vine Borer

By Dr. Raymond Cloyd

We have received inquiries regarding cucumber and squash plants wilting and collapsing, and a recent visit to the Manhattan Community Garden (Manhattan, KS) provided evidence that the larvae of the squash vine borer (Melittia cucurbitae) are indeed active inside plants. Squash vine borers feed on squash, pumpkin, cucumber, and muskmelon.

Adults are “clear wing” moths 5/8 inches long. The front wings are covered with scales whereas the hind wings are transparent because they do not have scales. Hind wings have red-brown hairs along the edges. The body is orange-red, with gray bands and three black markings along with orange-red hairs on the abdomen (Figure 1).

Figure 1: Squash vine borer adult
Figure 1: Squash vine borer adult

Moths are active during the day with females depositing eggs on the stem near the soil level or on stems or petioles when plants begin to flower. The eggs are red-brown, flattened, 1/30 inches in diameter, and are typically located at the base of plants (Figure 2).

Figure 2: Squash vine borer eggs located at base of plant
Figure 2: Squash vine borer eggs located at base of plant

A single female is capable of producing up to 200 eggs. Larvae that hatch from eggs are white, with a dark head capsule. Young larvae are 1/4 to 3/4 inches in length and taper toward the end of the abdomen (Figure 3).

Figure 3: Young larva of squash vine borer
Figure 3: Young larva of squash vine borer

Mature or fully-grown larvae are 1.0 to 1.5 inches long (Figure 4).

Figure 4: Mature larva of squash vine borer larval feeding
Figure 4: Mature larva of squash vine borer larval feeding

Larvae that hatch from eggs immediately tunnel into the base of plants. The larvae feed for 30 days in the plant stem, and increase in size as they mature. Typically there is only one larva per stem; however, multiple larvae may be present in a single tunnel in the stem. Mature larvae leave plants and burrow into the soil to pupate by constructing brown, silkened cocoons in which they overwinter. Squash vine borer overwinters as a mature larva in the cocoon that is located 1.0 to 2.0 inches in the soil. In early spring, the adult (moth) emerges from the soil. Squash vine borer has one generation in Kansas.

At this point, squash vine borer larvae are feeding within the internal vascular tissues inhibiting the plant’s ability to take-up water and nutrients; consequently, resulting in sudden wilting of vines and plant collapse (Figure 5).

Figure 5: Plants wilting due to squash vine borer larval feeding
Figure 5: Plants wilting due to squash vine borer larval feeding

Once the larvae are inside the plant, there is little that can be done to control them or prevent damage. The tunnels inside infested plants are packed with moistened frass (fecal matter) (Figure 6).

Figure 6: Moistened frass or fecal matter inside infested plant stem
Figure 6: Moistened frass or fecal matter inside infested plant stem

Yellow-green sawdust-like frass can also be found around feeding sites at the base of vines or plants (Figure 7)

Figure 7: Frass or fecal matter near tunnel entrance of squash vine borer larvae
Figure 7: Frass or fecal matter near tunnel entrance of squash vine borer larvae

,which will be a direct indication that larvae have entered the plant.

Since the larvae are feeding inside the plant there is not much that can be done to kill the larvae; however, there are number of plant protection strategies that can be implemented during the remainder of the growing season, including: sanitation and physical control.

Sanitation: remove and dispose of all wilted plants before the larvae leave and enter the soil. Discard all plant debris such as vines and fruits after harvest.

Physical control: rototilling in fall or spring will directly kill squash vine borer pupae or bring the pupae to the soil surface where they are exposed to cold weather or predation by birds. In addition, the process of deep plowing will bury the pupae deeper in the soil profile thus inhibiting adult emergence. Another technique that may have limited use in large plantings but may be feasible for smaller plantings is to locate infested stems and vines, create slits at the base of the plant, and then use tweezers to remove and destroy the larvae inside. The plant base should then be covered with moist soil, which stimulates the production of secondary vines and/or root growth; thus helping the plant to re-establish.

There is a new up-dated extension publication on squash vine borer (MF3309) that contains current information on plant protection with images of the insect (both adult and larva) and plant damage. You can download a PDF from the following website:

http://www.bookstore.ksre.ksu.edu/pubs/MF3309.pdf

Japanese Beetles are Back!

— by Dr. Raymond Cloyd

Japanese beetle adults are out in full-force in certain regions of Kansas feeding on one of their favorite host plants…roses. The means of dealing with the adult stage of this insect pest are limited, however, and have been for many years, with the use of insecticides being the primary plant protection strategy. Japanese beetle, Popillia japonica is native to Japan and was first reported in the United States in 1916 in the state of New Jersey. Since then, Japanese beetles have spread throughout the country from Maine to Georgia with permanent establishments in nearly every state east of the Mississippi River and several western states west of the Mississippi River. Japanese beetles are established in eastern and central portions of Kansas and are slowly moving further west. The adult is one of the most destructive insect pests of horticultural plants in both landscapes and gardens. The larvae or grub is a major turfgrass pest in home lawns, commercial settings, and golf courses.

Japanese beetle adults are 9/16 inches long and metallic green with coppery-brown wing covers (Figure 1).

Fig 1: Close-up of Japanese beetle adult.
Fig 1: Close-up of Japanese beetle adult.

There are approximately 14 tufts of white hair present along the median of the abdomen (Figure 2).

Fig 2: Japanese beetle adult. Note tufts of white hairs on median of abdomen.
Fig 2: Japanese beetle adult. Note tufts of white hairs on median of abdomen.

Adult Japanese beetles emerge from the soil and live from 30 to 45 days feeding on plants over a four-to-six-week period. They feed on many ornamental plants including trees, shrubs, vines, herbaceous annual and perennials, and of course—roses. Plant placement in the landscape and volatiles emitted by plants are factors that influence adult acceptance. Furthermore, Japanese beetle adults produce aggregation pheromones that attract individuals (both males and females) to the same feeding location. Adults may fly up to five miles to locate a feeding site; however, they tend to fly only short distances to feed and lay eggs.

Japanese beetle adults feed through the upper leaf surface (epidermis) and leaf center (mesophyll), leaving the lower epidermis intact. They usually avoid feeding on tissue between leaf veins, resulting in leaves appearing lace-like or skeletonized (Figure 3).

Fig 3: Japanese beetle adult feeding damage.
Fig 3: Japanese beetle adult feeding damage.

Adults are most active during warm days, feeding on plants that are exposed to sunlight throughout the day, which is likely why roses are a susceptible host plant because they require at least six hours of direct sunlight. Japanese beetle adults also start feeding at the top of plants, migrating downward after depleting food sources. Japanese beetle adults aggregate in masses on rose flowers (Figure 4).

Fig 4: Japanese beetle adults aggregating on rose flower.
Fig 4: Japanese beetle adults aggregating on rose flower.

Although adult beetles feed primarily on flowers, they will also feed on leaves (Figure 5).

Fig 5: Japanese beetle adults feeding on leaves.
Fig 5: Japanese beetle adults feeding on leaves.

Japanese beetle adults chew holes in flower buds, which prevent flowers from opening or cause petals to fall prematurely. Moreover, adults will consume entire rose petals, and feed on the pollen of fully-opened flowers.

Japanese beetle adult management involves implementing a variety of plant protection strategies, including: cultural, physical, and insecticidal. Cultural involves maintaining healthy roses through proper irrigation, fertility, mulching, and pruning, which are important in minimizing any type of stress; thus possibly decreasing susceptibility. Also, removing weeds such as smartweed (Polygonum spp.) that are attractive to Japanese beetle adults will at least alleviate infestations. Physical is associated with hand-picking or collecting Japanese beetle adults from roses before populations are extensive. The appropriate time to hand-pick or collect adult beetles is in the morning when ambient air temperatures are typically “cooler.” Adults can be easily collected by placing a wide-mouthed jar or bucket containing rubbing alcohol (70% isopropyl alcohol) or soapy water underneath each adult, and then touching them. Adults that are disturbed fold their legs perpendicular to the body, and fall into the liquid and are subsequently killed. This procedure, when conducted daily or every-other-day, particularly after adults emerge, may substantially reduce plant damage. The use of Japanese beetle traps is not recommended since the floral lure and synthetically-derived sex pheromone may attract more adult beetles into an area than would “normally” occur. Adult beetles may also feed on roses before reaching the traps, which increases potential damage.

Spray applications of contact insecticides will kill Japanese beetle adults. Repeat applications will be required; especially when populations are excessive. Furthermore, thorough coverage of all plant parts will increase effectiveness of the application. The insecticide carbaryl (Sevin) and several pyrethroid-based insecticides including those containing bifenthrin or cyfluthrin as the active ingredient may be used to suppress Japanese beetle adult populations. However, since most of these insecticides are also directly harmful to many natural enemies (parasitoids and predators) their continual use may lead to secondary pest outbreaks of other pests including the twospotted spider mite (Tetranychus urticae). Moreover, these insecticides are directly harmful to pollinators (honey bees and bumble bees). Therefore, applications should be conducted in the early morning or late evening when pollinators are less active. In general, systemic insecticides, are not effective because Japanese beetle adults have to feed on leaves and consume lethal concentrations of the active ingredient. If extensive populations are present, then damage to plants may still occur.

The battle or war against Japanese beetle adults requires patience, persistence, and diligence in order to prevent adults from causing substantial damage to roses and other susceptible plants.

 

For more information on Japanese beetle and other pests of roses consult the following publication:

Compendium of Rose Diseases and Pests (second edition). 2007. APS Press. The American Phytopathological Society, St. Paul, MN.

LACE BUGS: NOTHING TO WORRY ABOUT?

–by Dr. Raymond Cloyd

Lace bugs are insects that are present throughout Kansas feeding on a variety of plant types; however, lace bugs are not really a major insect pest of garden and landscape plants because they typically do not inflict significant direct harm to plants. Nonetheless, abundant populations may reduce the aesthetic appearance of certain plant types. Lace bugs feed on a wide-range of trees and shrubs, including: azalea, basswood, cotoneaster, hawthorn, linden, oak, rhododendron, and sycamore. Herbaceous plants susceptible to lace bugs include: aster, chrysanthemum, and scabiosa. The major plant-feeding lace bug species include Stephanitis spp., and Corythucha spp. Stephanitis spp. are primarily pests of broad-leaved evergreens, whereas Corythucha spp., including the sycamore lace bug (Corythucha ciliata) are pests of deciduous trees and shrubs.

LacebugDamagea

Fig 1:  Lace bug damage on azalea plant. Note the stippled and/or bleached appearance of the leaves.

 

Lace bugs feed primarily on leaf undersides; using their piercing-sucking mouthparts to withdraw plant sap from individual leaf cells. Their feeding cause’s leaves to appear stippled and/or bleached (Figure 1). Lace bugs feed similar to the twospotted spider mite, Tetranychus urticae, with both withdrawing chlorophyll (green pigment) from plant cells. The damage associated with lace bugs is similar to that caused by spider mites and leafhoppers; however, lace bugs leave black, tar-spot-like droplets of

LaceBugAdults2b

Fig 2: Black, tar-spot-like droplets of lace bug excrement.

excrement (“Lace Bug Poop”) on leaf undersides (Figure 2). The presence of black excrement distinguishes lace bugs from spider mites and/or leafhoppers. Excessive lace bug populations and extensive feeding may reduce plant vigor; however, any direct plant effects are dependent on plant age and size (especially young or newly-transplanted trees and shrubs).

Adult lace bugs are very distinguishable and quite attractive. The adults possess lacy, clear, shiny wings that are held flat over the body (Figure 3).

LB

Fig 3:  Close-up of lace bug adult.

 

They are 1/8 to 1/4 inch (3 to 8 mm) in length, and move sideways when disturbed. Female lace bugs lay between 20 to 50 eggs during their lifespan underneath leaves. The eggs are usually positioned alongside leaf veins and are black and shaped like a wine flask. Shiny, black nymphs with spines around the periphery of the body emerge from the eggs (Figure 4).

LaceBugImmatures

Fig 4: Lace bug nymphs on leaf underside.

Nymphs undergo five instar stages before reaching adulthood. Shed skins on leaf undersides are evidence of nymphs that have transformed into adults. The life cycle (egg to adult) generally takes about 30 days to complete. There may be up to three generations per year although development is contingent on temperature. Stephanitis spp. overwinters as eggs that are cemented onto leaves and Corythucha spp. overwinters as adults in bark crevices and branch crotches. Adult activity commences in the spring when leaves unfold.

Lace bugs are more abundant on plants such as rhododendron and azalea that are exposed to full sun rather than on plants in shady locations. The management of lace bugs is generally not warranted because lace bugs are susceptible to many natural enemies including predators; such as, green lacewings, plant bugs, assassin bugs, minute pirate bugs, and spiders. A forceful water spray may be effective in quickly dislodging lace bugs from plants. However, if necessary, a number of contact insecticides registered for use against lace bugs can be applied. Be sure to read the label to make sure lace bugs are listed. Be sure to thoroughly cover leaf undersides to maximize the effectiveness of spray applications because the leaf undersides are where all the life stages (eggs, nymphs, and adults) of lace bugs are located.

If you have any questions regarding the management of lace bugs contact your county horticultural agent, or university-based or state extension entomologist.

 

 

 

 

Bagworms Are Back

–by Dr Raymond Cloyd

It is the time of year you have all been waiting for, that is, dealing with that

“infamous” of insect pests known as the bagworm (Thyridopteryx ephemeraeformis). Throughout Kansas, bagworm eggs have hatched and the young caterpillars (“munching machines”) are out-and-about feeding on both broadleaf and evergreen trees and shrubs. Bagworms were first considered a pest of conifers but over the years they have expanded their host range to include a number of broadleaf plants, including: rose, honeylocust, and flowering plum. So, what is the best way to deal with bagworm caterpillars and thus prevent them from causing damage? Hand-picking any small caterpillars (along with their accompanying bag) and placing them into a container of soapy water will kill them directly. This practice, if feasible, will quickly remove populations before they can cause substantial plant damage. I recommend that everyone should consider having a weekend “bagworm hand-picking party” with prizes awarded to those individuals that collect the most bags J. These “bagworm hand-picking parties” will be a way to enhance family quality time J.

For those less interested in hand-picking, there are a number of insecticides labeled for use against bagworms including those with the following active ingredients (trade name in parentheses): acephate (Orthene), Bacillus thuringiensis subsp. kurstaki (Dipel/Thuricide), cyfluthrin (Tempo), lambda-cyhalothrin (Scimitar), trichlorfon (Dylox), indoxacarb (Provaunt), chlorantraniliprole (Acelepryn), and spinosad (Conserve). Many of these active ingredients are commercially available and sold under different trade names or as generic products. However, several insecticides may not be directly available to homeowners. The key to dealing with bagworms when using insecticides is to apply early and frequently enough in order to kill the highly susceptible young caterpillars that are feeding aggressively on plant foliage (Figure 1).

IMG_8421

Figure 1

Older caterpillars that develop later in the season, in the bags (Figure 2), are typically more difficult to kill with insecticides. In addition, females feed less as they prepare for reproduction; thus, reducing their susceptibility to spray applications and any residues. The bacterium Bacillus thuringiensis subsp. kurstaki is active on young caterpillars; however, the active ingredient must be consumed to be effective, so thorough coverage of all plant parts and frequent applications are required to avoid having to deal with later life stages.

Bagworm2008xq

Figure 2

This compound is sensitive to ultra-violet light degradation and rainfall, which reduces residual activity. Spinosad is the active ingredient in a number of homeowner products, including: Borer, Bagworm, Tent Caterpillar & Leafminer Spray; Captain Jack’s DeadBug Brew; and Monterey Garden Insect Spray. These products work by contact and ingestion (stomach poison) although they are most effective when ingested and can be used against older or larger bagworm caterpillars (Figure 3).

Bagworm2008a1

Figure 3

Cyfluthrin, lambda-cyhalothrin, trichlorfon, chlorantraniliprole, and indoxacarb may be used against both the young and the older caterpillars. However, thorough coverage of all plant parts, especially the tops of trees and shrubs, where bagworms commonly start feeding, and frequent applications are required. The reason why multiple applications will be needed when bagworms are first detected is because bagworms “blow in” (called ‘ballooning’) from neighboring plants. If left unchecked, bagworms can cause significant damage, thus ruining the aesthetic quality of plants. In addition, they may actually kill plants, especially evergreens since they do not usually produce another flush of growth, and newly transplanted small plants.

If you have any questions regarding the management bagworms contact your county horticultural agent, or university-based or state extension entomologist.

Spirea Aphid: Watch out for this “Sucking” Insect

–by Dr. Raymond Cloyd

Spirea aphid (Aphis spiraecola) is present feeding on spirea (Spiraea spp.) plants in landscapes. Spirea aphid colonies aggregate on terminal growth (Figures 1 and 2) and their feeding causes leaf curling and stunted plant growth. Spirea aphids prefer to feed on stems and leaf undersides of succulent plant growth. All mature aphids are parthenogenic (reproduce without mating) with females giving birth to live nymphs, which themselves are females. Eggs are laid on bark or on buds in the fall by wingless females after having mated with males. Eggs hatch in spring, and young nymphs develop into stem mothers that are wingless. Spirea aphid females are pear-shaped and bright yellow-green. Stem mothers reach maturity in about 20 days. Each spirea aphid female can produce up to 80 offspring or young females.

Figure 2. SpireaAphidsAggregatingonTerminalGrowthofSpireaPlant
Figure 1: Spirea Aphids Feeding on Spirea Plant

Figure 2. SpireaAphidsAggregatingonTerminalGrowthofSpireaPlant
Figure 2: Spirea Aphids Aggregation on Terminal Growth of Spirea Plant

Although the aphids produce honeydew (sticky, clear liquid); continual rainfall will wash the honeydew off plants. In the summer, both winged and non-winged aphids may be present. The winged forms usually appear when conditions become crowded on infested plants, in which they migrate to a more suitable food source, such as another spirea plant to start another colony. Heavy rainfall and strong winds will dislodge spirea aphid populations from plants onto the ground, where they eventually die. Frequent applications (twice per week) of forceful water sprays will quickly remove spirea aphid populations without disturbing natural enemies such as parasitoids and predators. They have a number of natural enemies including: ladybird beetles, green lacewings, and hover flies that may help to regulate spirea aphid populations.

Spirea aphids are, in general, exposed to regular applications of pesticides such as insecticidal soaps (potassium salts of fatty acids) and/or horticultural oils (petroleum, mineral, or neem-based) that may be effective in suppressing populations of spirea aphid. These pesticides have contact activity only, so thorough coverage of all plant parts is important. Furthermore, these pesticides are generally less harmful to natural enemies compared to conventional pesticides.

Rose Sawflies: Out With a Vengeance!

–by Dr. Raymond Cloyd

We are receiving numerous questions regarding insects feeding and completely devouring rose plants. These insects are sawflies, and there are at least two species that attack roses during this time of year: the rose slug (Endelomyia aethiops) and bristly rose slug (Cladius difformis). Rose slugs are the immature or larval stage of sawflies, which are black to yellow colored wasps.

Rose sawfly females create pockets or slits along the edges of rose leaves with their saw-like ovipositor (egg-laying devise) and insert individual eggs. Larvae hatch from eggs and resemble a slug. The larvae are 1.2 cm long when full-grown and yellow-green with an orange head (Figure 1). Larvae eventually fall on the soil surface to pupate. Rose slugs overwinter as pupae in earthen cells created by the larvae. There is typically one generation per year in Kansas. Bristly rose slug larvae are pale-green and 1.5 to 2.0 cm in length. The body is covered with numerous bristle-like hairs (Figure 2). There is generally one generation per year in Kansas.

Figure 1. RoseSawflyLarvaeFeedingonRoseLeaf
Figure 1: Rose Sawfly Larvae Feeding on Rose Leaf

Figure 2. BristlyRoseSlugLarvaeFeedingOnLeafUndersideofRose
Figure 2: Bristly Rose Slug Larvae Feeding on Spirea Plant

Rose slug larvae feed on the underside of rose leaves; resulting in leaves with a skeletonized appearance (Figures 3 and 4) and eventually they create notches or holes on the leaf margins. Bristly rose slug larvae feed on the underside of rose leaves and also cause leaves to appear skeletonized. However, the larvae may chew larger holes than the rose slug.

Figure 3. DamageonRosePlantCausedByRoseSlug
Figure 3: Damage on Rose Plant Caused by Rose Slug

Figure 4. DamageonRoseLeafCausedByRoseSlug
Figure 4: Damage on Rose Leaf Caused by Rose Slug

Small infestations of either the rose sawfly or bristly rose slug can be removed by hand and placed into a container of soapy water. A forceful water spray will quickly dislodge sawfly larvae from rose plants and they will not be able to crawl back onto rose plants. There are a number of contact insecticides with various active ingredients that are effective in suppressing populations of both sawflies. However, the bacterium, Bacillus thuringiensis subsp. kurstaki (sold as Dipel or Thuricide) will have no activity on sawflies as this compound only works on caterpillars.

Wheat Aphids

–by Dr. Jeff Whitworth and Dr. Holly Schwarting

Wheat aphids, primarily bird cherry-oat and greenbugs, continue to migrate into Kansas on southern winds.

GB adult and nymphs

BCOA nymphs

The most common question this last week then is whether to add insecticide to a fungicide application to kill the aphids.  First of all, we do not recommend pesticide applications unless justified, and the mere presence of aphids in wheat does not justify an insecticide application.  Aphids need to be at densities of 20+ aphids/tiller when wheat is in the boot to heading stages before aphids begin to impact wheat simply due to their feeding.  Even then, their feeding is more impactful on plants that are already stressed by less than ideal growing conditions and when there are few beneficials present, i.e. lady beetles, lacewings, parasitic wasps, etc.  Recent rains seem to have really helped alleviate the previous dry conditions- so growing conditions are not stressing the wheat.  When an insecticide is added to a justified fungicide application, the insecticide will kill the aphids, as well as all the beneficials.  The aphids will continue to migrate into the state but the beneficials will be gone and much slower to re-populate.  Foliar insecticide applications made to control aphids with the aim of reducing the transmission of Barley yellow dwarf viruses has not been proven and thus is not recommended.  At the present time there seem to be good populations of lady beetles and parasitic wasps in wheat fields to help mitigate aphid populations.

lady beetle larva

aphid mummy

European Pine Sawfly

–by Dr. Raymond Cloyd, Professor and Extension Specialist in Ornamental Entomology/Plant Protection

      European pine sawfly, Neodiprion sertifer larvae are out-and-about feeding on pine trees. Young larvae are 1/4 inch in length and olive-green in color with a black head (Figures 1 and 2).

Figure1

Figure 1

Figure2

Figure 2

Older larvae are >1.0 inch long with green stripes. The larvae are gregarious or feed in groups on the needles of a variety of pines, especially Scotch, red, and mugo pine. Larvae will strip the needles of mature foliage, leaving only the central core, which is white and then turns brown (Figure 3); eventually falling off.

Figure3

Figure 3

In general, larvae complete feeding by the time needles emerge from the candelabra. Therefore, those needles are not damaged. There really is only a minor threat of branch or tree death resulting from sawfly larval feeding. However, the loss of second- and third-year needles may be noticeable in landscape trees and ruin their appearance. In late spring, the larvae drop to the ground and pupate in brown, leathery cocoons at the base of trees. Wasp-like adults emerge in fall and lay eggs in the needles before winter. There is one generation per year in Kansas.

Although sawfly larvae look-like caterpillars; they are not caterpillars (Order: Lepidoptera) as they are related to ants, bees, and wasps (Order: Hymenoptera). The best way to tell a sawfly larva from a caterpillar is by the following: 1) sawfly larva have prolegs on every abdominal segment whereas caterpillars are missing prolegs on the abdomen and 2) caterpillar larva have hairs or crochets on their feet whereas sawfly larva do not have hairs or crochets on their feet.

Since sawfly larvae are not caterpillars, the bacterial insecticide, Bacillus thuringiensis subsp. kurstaki (sold as Dipel) will not directly kill sawfly larvae. Therefore, dealing with sawfly larvae involves hand-picking (you can wear gloves if you wish) or dislodging larvae from plants by using a forceful water spray. If necessary, there are a number of insecticides that may be applied to suppress populations of the European pine sawfly including acephate (Orthene), azadirachtin, carbaryl (Sevin), spinosad (Captain Jack’s DeadBug Brew and Conserve), and any pyrethroid-based insecticide with any of the following active ingredients: bifenthrin, cyfluthrin, and lambda-cyhalothrin). Be sure to read the insecticide label to make sure that sawflies are listed. For more information regarding European pine sawfly management contact your county or state extension specialist.

 

 

 

 

 

BE ON THE LOOK-OUT FOR GOLDENROD SOLDIER BEETLES

–by Dr. Raymond Cloyd

If you haven’t noticed yet, hordes of goldenrod soldier beetle (Chauliognathus pennsylvanicus) adults are feeding on goldenrod (Solidago spp.) and other flowering plants such milkweed (Asclepias spp.). Adults are extremely abundant feeding on the flowers of chive (Allium Schoenoprasum), and can also be seen feeding on linden trees (Tilia spp.) when in bloom. In fact, adults may be observed both feeding and mating (occasionally at the same time). The goldenrod soldier beetle is common to both the western and eastern portions of Kansas.

Figure 1 Adult Goldenrod Soldier Beetle.pptx

Adults are about 1/2 inch (12 mm) in length, elongated, and orange in color with two dark bands on the base of the forewings (elytra) and thorax (middle section). They are typically present from August through September. Adult soldier beetles feed on the pollen and nectar of flowers, but they are also predators and may consume small insects such as aphids and caterpillars. Flowers are a great place for the male and female soldier beetles adults to meet, get acquainted, and mate (there is no wasting time here). Soldier beetle adults do not cause any plant damage. Sometimes adults may enter homes; however, they are rarely concern. The best way to deal with adults in the home is to sweep, hand-pick, or vacuum.

Figure 2 Adult Goldenrod Soldier Beetles Mating

Adult females lay clusters of eggs in the soil. Larvae are dark-colored, slender, and covered with small dense hairs or bristles, which gives the larvae a velvety appearance. Larvae reside in the soil where the feed on grasshopper eggs; however, they may emerge from the soil to feed on soft-bodied insects and small caterpillars.

Figure 3 Adult Goldenrod Soldier Beetles Feeding